Definitions of key terms and concepts in the Eventual platform
Authentication
ev auth login
to authenticate via your browser, eliminating the need to manage API keys manually.Example: ev auth login
opens browser for secure authenticationClient
client = Client.default()
daft
Environment (Env)
env = Env().pip_install(["torch", "pillow"])
Job
@job.main
that runs distributed processing tasks.Example: @job.main def process_data(input_path: str):
Job Handle
job_handle = client.run(job, args={"param": "value"})
Multimodal Data
Resource
model = Resource(name="classifier", path="s3://models/model.pkl")
Space
Volume
volume = Volume(name="data", path="s3://bucket/data/")
Auto-scaling
Fault Tolerance
Distributed Processing
Job Lifecycle
Monitoring
Batch Processing
CLI
ev
command-line tool for interacting with the Eventual platform from your terminal.Usage: ev run ./job.py
, ev jobs list
Decorator
@
symbol to modify function behavior. The @job.main
decorator turns a regular function into an Eventual job.Example: @job.main def my_function():
Dependencies
env.pip_install(["numpy", "pandas", "torch"])
Embeddings
Feature Extraction
Parquet
SDK
ev-sdk
Python package that provides programmatic access to the Eventual platform.Installation: pip install ev-sdk
Type Hints
def process(data: str, count: int) -> Dict[str, Any]:
DataFrame
ETL
Pipeline
Query Engine
Serialization
Schema
{"name": "string", "age": "integer", "image_path": "string"}
Inference
Model
Pre-trained Model
Tensor
Training
Validation
Cluster
Compute
Container
Load Balancing
Scaling
Storage
Completed
Failed
Pending
Running
Scheduled
Submitted
API
AWS
CLI
GPU
HTTP
JSON
ML
S3
SDK
URL
Docker
Kubernetes
Pandas
PyTorch
Ray
Spark
TensorFlow